Send Message
Shenzhen Ofeixin Technology Co., Ltd
About us
Your Professional & Reliable Partner.
SHENZHEN OFEIXIN TECHNOLOGY Co.,Ltd. founded in 2014, with office located in Shenzhen China, and factory located at Liuyang Town ChangSha City, HuNan Province,covering an area of 39,000㎡,is one of the earliest and most proficient manufacturing enterprises which integrate R&D, production and sales as a whole in the field of high-speed wireless network.SHENZHEN OFEIXIN TECHNOLOGY Co.,Ltd. is dedicated to providing customers with perfect IOT connection solutions.With many years of experience that ...
Learn More

0

Year Established

0

Million+
Employees

0

Million+
Annual Sales
China Shenzhen Ofeixin Technology Co., Ltd HIGH QUALITY
Trust Seal, Credit Check, RoSH and Supplier Capability Assessment. company has strictly quality control system and professional test lab.
China Shenzhen Ofeixin Technology Co., Ltd DEVELOPMENT
Internal professional design team and advanced machinery workshop. We can cooperate to develop the products you need.
China Shenzhen Ofeixin Technology Co., Ltd MANUFACTURING
Advanced automatic machines, strictly process control system. We can manufacture all the Electrical terminals beyond your demand.
China Shenzhen Ofeixin Technology Co., Ltd 100% SERVICE
Bulk and customized small packaging, FOB, CIF, DDU and DDP. Let us help you find the best solution for all your concerns.

Quality WiFi7 Module & WiFi HaLow Module manufacturer

Find Products That Better Meet Your Requirements.
Cases & News
The Latest Hot Spots.
WIFI HaLow: An Integral Component of Smart Homes
As the number of smart home devices continues to grow, we are witnessing the limitations of traditional wireless connectivity technologies in accommodating the expanding network of home automation devices. The increasing device count leads to congestion in home networks, and operating on the same popular frequency bands can result in signal interference and performance issues.   Wireless Interference: One of the challenges faced by smart homes is wireless interference. The proliferation of wireless devices in homes, coupled with the growing number of different wireless standards operating in corresponding frequency bands, increases interference between devices. Users may experience frustration due to interference when using these devices. This is where the advantages of WIFI HaLow come into play. In comparison to traditional wireless standards, WIFI HaLow operates at lower frequencies and can deploy over 26 non-overlapping channels. It exhibits better resistance to interference in crowded WIFI environments with numerous sources of interference, such as those found in smart homes.   High Coverage: We have all encountered areas in our homes with weak or no WIFI signal. WIFI HaLow addresses this issue with its powerful signal penetration and long-range capabilities. Unlike traditional IoT devices that may experience poor or unavailable wireless signals even within the access point's range, ordinary WIFI access points may struggle to connect to outdoor smart devices like cameras, weather sensors, and sprinkler systems. WIFI HaLow, however, does not face such limitations. Operating in the Sub-1 GHz range, it can reach the boundaries of a home and penetrate through objects that standard WIFI cannot reach. With its longer wavelength and lower transmission frequency compared to common home wireless standards, WIFI HaLow signals can better pass through obstacles and walls, providing greater flexibility in positioning smart home devices without the need for complex mesh networks or multiple access points.   Security: WIFI HaLow adheres to the same security standards as conventional WIFI, such as WPA3. This helps maintain the integrity and security of home networks according to the same standards as your current WIFI network settings. WPA3 is mandatory for WIFI HaLow certified devices, ensuring robust authentication, enhanced encryption for highly sensitive data, and the resilience of the network. With the adoption of WIFI HaLow, legacy devices using older security protocols are no longer a potential vulnerability in the network.   Low Power Consumption: Existing smart homes often rely on power sources, especially for household appliances abroad. Effectively reducing power consumption to meet national device energy consumption standards becomes crucial. Moreover, devices powered by internal batteries impose even stricter power requirements, posing further challenges. WIFI HaLow, designed specifically for IoT devices, provides an effective solution by lowering power consumption and extending battery life. In comparison to existing WIFI technologies, HaLow addresses the shortcomings of high power consumption and short transmission distances, making it a wireless standard suitable for low-power micro-data transmissions, particularly showcasing significant advantages in the smart home domain. While communication protocols like Zigbee, BLE, and Enocean also boast low power consumption characteristics, WIFI HaLow's uniqueness lies in combining existing WIFI technology with low-power design. This fusion allows WIFI HaLow to comprehensively meet the requirements of various application scenarios for low power and long battery life in smart home devices.   In conclusion, WIFI HaLow, as a crucial component of the smart home sector, brings new hope to overcome the limitations of traditional wireless connectivity technologies. With the rapid growth of smart home devices, WIFI HaLow, with its low power consumption, interference resistance, powerful signal penetration, and security standards aligned with WPA3, provides support for the sustainable development of smart homes. It not only excels in congested WIFI environments but also eliminates dead zones, enabling seamless connectivity for smart home devices, offering users a more intelligent, convenient, and secure home experience.   If you would like to learn more about WIFI HaLow, please visit our official website at QOGRISYS and feel free to contact our team of experts. Let's explore innovative ways to advance smart home technology together. We look forward to collaborating with you to drive the development of intelligent, convenient, and secure homes in the future.
QOGRISYS WIFI HaLow Module: 4108E-S
In the past decade, WIFI technology has bridged networks for billions of smart interconnected devices in homes and businesses, facilitating the rapid exchange of information. However, current WIFI standards face challenges, including limitations in protocol range and overall functionality. These challenges make communication over longer distances difficult, hindering the formation of a truly interconnected ecosystem for smart devices. To meet the needs of low-power IoT clients and accelerate innovation in IoT applications, WIFI HaLow technology has emerged based on the IEEE 802.11ah standard. In comparison to traditional WIFI, WIFI HaLow can connect up to 8,192 IoT devices over longer distances and with lower power consumption through a single wireless access point (AP). The introduction of this technology is expected to break the limitations of communication distance, creating broader possibilities for the interconnection of smart devices.   QOGRISYS Technology's WIFI HaLow module, the 4108E-S, powered by the Morse Micro MM6108 chipset, represents a significant innovation in the wireless communication field. The introduction of this module will provide a more powerful and efficient connectivity solution for IoT applications. The module caters to unique requirements in various application scenarios, including smart cities, access control systems, smart agriculture, smart retail, and smart homes, offering a stable, reliable, and secure connection service for a broader range of indoor and outdoor IoT applications. Key features of the WIFI HaLow module 4108E-S include: Smaller Size: The 4108E-S has a compact size of 13.0 x 13.0 x 2.1mm, meeting the demand for small modules in end-user products and consequently reducing the volume and deployment costs of customer products. Rich Peripheral Interfaces: The 4108E-S supports SDIO 2.0 interface and SPI mode operation, along with various peripheral interfaces such as a general I2C interface, UART interface, and GPIO interface. This provides users with greater flexibility, enabling easy integration into different applications.   Extended Coverage Range: Operating in the 902 – 928MHz frequency band, the module demonstrates exceptional coverage performance with strong penetration capabilities. It operates in a Sub-1GHz frequency band, reducing interference and achieving widespread coverage over long distances, exceeding the range of traditional WIFI. Lower Power Consumption: Supporting selectable 1/2/4/8MHz channel bandwidths, the module accommodates data throughput ranging from 3.333 Mbps to 32.5 Mbps. This allows devices to operate for extended periods in low-power modes, minimizing the need for frequent charging or battery replacement. Enhanced Security: The 4108E-S module provides multi-layered security features, including encryption (AES), hash algorithms (SHA-1/SHA-2), Protected Management Frames (PMF), and Opportunistic Wireless Encryption (OWE). These features ensure the confidentiality and integrity of wireless communication, making the 4108E-S module a reliable wireless communication solution suitable for various scenarios, including those with high-security requirements.   Currently, QOGRISYS Technology's WIFI HaLow module, the 4108E-S, has been launched, primarily targeting the North American and South American markets (902-928MHz). As the Internet of Things (IoT) continues to mature and diversify, QOGRISYS Technology is committed to continuous innovation, increased research and development efforts, enhanced product performance, and gradually propelling the IoT into a new era characterized by scalability, security, low power consumption, and remote capabilities.        
WIFI7: Embracing a New Era of Wireless Connectivity
On January 8, 2024, the Wi-Fi Alliance announced the Wi-Fi CERTIFIED 7 certification, introducing powerful new features aimed at enhancing Wi-Fi performance and improving connectivity in various environments. This certification marks the official beginning of the WIFI7 era. On January 10, Bingo Corporation announced the launch of the world's first WIFI7 public network at the CES exhibition, marking the official transition of Wi-Fi 7 technology into a new phase of practical application. Against the backdrop of this technological revolution, let's explore the differences between WIFI7 technology and previous Wi-Fi technologies to gain a more comprehensive understanding of this new era in wireless network technology and prepare for the arrival of the WIFI7 era.   In the previous article, we provided a detailed introduction to the Multi-AP Coordination technology in WIFI7, and those interested can click the link to learn more: https://www.wifibtmodule.com/news/the-era-of-wifi-7-has-officially-arrived-165518.html.In this article, we will discuss the QAM modulation and 320MHz bandwidth in WIFI7 technology.     Orthogonal Amplitude Modulation (QAM) is a core technology in WIFI7, representing a digital modulation technique that maps digital signals onto multiple carriers with varying amplitudes and phases to achieve high-speed data transmission. In QAM, we often encounter a numerical value, which refers to the Modulation Symbol. The modulation symbol serves as the fundamental unit for carrying data in a specific modulation scheme. It signifies a particular signal state, and the information it contains can be transmitted and received through the modulation and demodulation process, typically represented by a set of discrete signal states or symbol points. Each modulation symbol represents a certain quantity of bits, or bits, depending on the modulation scheme and modulation order employed.     QAM modulation represents different modulation symbols by varying the amplitude and phase of the signal in two dimensions. In QAM, the number of modulation symbols is related to the modulation order. For instance, 16-QAM signifies 16 different modulation symbols, 64-QAM indicates 64 different modulation symbols, and the progression continues with WIFI4 using 64-QAM, WIFI5 employing 256-QAM, WIFI6 incorporating 1024-QAM, and WIFI7 introducing 4096-QAM modulation. Each modulation symbol can carry a specific amount of bit information, and with higher modulation orders, each symbol carries more bits, resulting in higher data transmission rates. Taking the example of the WIFI7 card O7851PM from Shenzhen QOGRISYS Technology Co., Ltd., which integrates 4096-QAM modulation technology, each modulation symbol can carry 12 bits. Compared to WIFI6 with 10 bits per symbol, this means a 20% speed improvement under the same encoding conditions.     Maximum 320MHz bandwidth   The bandwidth of WIFI is akin to the width of a road, where a wider bandwidth corresponds to a broader road, allowing for faster transmission of information.       In the early stages of WIFI and other wireless technologies like Bluetooth, the 2.4 GHz frequency band has been extensively shared, leading to significant congestion in that range. While the 5GHz frequency band offers more bandwidth compared to 2.4GHz, translating to faster speeds and greater capacity, it also faces congestion issues.   To achieve the goal of maximizing throughput, WIFI7 will continue to introduce the 6GHz frequency band and incorporate new bandwidth modes, including continuous 240MHz, non-continuous 160+80MHz, continuous 320MHz, and non-continuous 160+160MHz, providing users with a faster and more efficient data transmission experience.     Taking the O7851PM card module from QOGRISYS as an example, the O7851PM supports DBS and operates on both 2.4 GHz + 5 GHz and 2.4 GHz + 6 GHz frequency bands. Additionally, it also supports HBS, offering a maximum bandwidth of 320MHz in the 5GHz + 6GHz frequency bands or the standalone 6GHz frequency band. The maximum data rate reaches up to 5.8Gbps, providing users with an enhanced connectivity experience.   In conclusion, with the official release of WIFI7 technology, wireless networks have entered a new era, bringing forth enhanced performance and a more stable connectivity experience. The continuous evolution of QAM modulation technology and the introduction of a maximum 320MHz bandwidth have significantly improved the data transmission rates and efficiency of WIFI7. The modulation upgrades from 1024-QAM to 4096-QAM, along with the introduction of new frequency bands and bandwidth modes, provide users with faster and more efficient wireless connectivity options.     QOGRISYS Technology's O7851PM card module, serving as an exemplar of WIFI7 technology, showcases its robust performance with integrated 4096-QAM modulation technology and support for a maximum 320MHz bandwidth. This not only delivers an enhanced connectivity experience for users but also opens up new possibilities for the future development of wireless communication. With the advent of the WIFI7 era, we can anticipate further innovations and advancements, ensuring that wireless networks can provide more powerful and reliable services in various environments.

2024

01/26

The era of WiFi 7 has officially set sail
On January 8, 2024, the WiFi Alliance announced the device certification for WiFi 7, marked by the launch of WIFI CERTIFIED 7. This signifies the advent of the latest generation of wireless connectivity technology and is expected to accelerate the widespread adoption of WiFi 7. According to the "China WiFi IoT Industry Research Report (2023)," starting from 2023, the WiFi market is projected to witness the coexistence of products based on multiple standards, including WIFI 4/5/6/7, over the next five years. WiFi 7, in particular, is anticipated to experience rapid growth between 2023 and 2024, emerging as a key driver of WiFi market expansion in the next five years. By 2027, it is estimated that the shipment volume of WiFi 7 products will increase by nearly 20%. The rise of WiFi 7 heralds a new phase in wireless connectivity technology, providing users with faster and more stable network connections. With the gradual proliferation of WiFi 7, the future is expected to witness a comprehensive upgrade of WiFi technology, offering robust support for the digital transformation and intelligent development across various industries.     To meet diverse market demands,QOGRISYS introduces its latest WiFi 7 module   As a comprehensive provider of IoT solutions, QOGRISYS boasts a diverse product line that caters to the varied needs of the IoT market. Taking short/long-distance communication technologies as an example, QOGRISYS'S product range encompasses WiFi, Bluetooth, WiFi HaLow, Nearlink, as well as IoT/AIOT, PLC, Cellular, and more, addressing demands arising from different scenarios.   Furthermore, in response to specific application requirements, the company reverse-engineers the evolution of technology and product development to better meet the demands of segmented markets. Taking QOGRISYS'S introduced WiFi module products as an example, they can be broadly categorized into three types: consumer electronics-grade RF WiFi & Bluetooth 4/5/6/7 modules, industrial-grade RF WiFi & Bluetooth 4/5/6/7 modules, and automotive-grade RF WiFi & Bluetooth 4/5/6/7 modules. It can be said that QO is capable of launching different types of modules to meet the needs of various scenarios.   Just recently, QOGRISYS unveiled its latest communication module, the O7851PM, which supports WiFi 7 technology. This module, at the forefront of WiFi performance, aims to break through wireless connectivity boundaries, delivering an enhanced networking experience for the next generation of IoT and mobile terminal devices.       According to information released by QOGRISYS, the WiFi 7 module O7851PM utilizes an M.2 PCIe interface, supports Dynamic Bandwidth Selection (DBS), and enables dual-band concurrent operation at 2.4 GHz + 5 GHz, 2.4 GHz + 6 GHz, and 5 GHz + 6 GHz. Additionally, it supports simultaneous operation in the 2.4 GHz + 5 GHz + 6 GHz tri-band, achieving a maximum data transfer rate of up to 5.8 Gbps. Furthermore, the module supports Bluetooth 5.3 with a maximum rate of 2 Mbps and includes features for low-power audio and Bluetooth Low Energy (BLE). The module incorporates security features such as WPA3 encryption to ensure the confidentiality and integrity of data transmission, meeting stringent security requirements for short-range connections.   Currently, the O7851PM, with its outstanding data transfer rate, ultra-low latency, and enhanced network reliability, has emerged as an ideal solution for various applications. It can meet the growing demands for wireless communication capabilities in areas such as smart homes, industrial automation, healthcare, transportation, and more.     The WiFi IoT industry is still in an adjustment phase, but products have already been implemented in major fields   The development of WiFi 7 has spanned over two years, and its adoption rate among terminals is on the rise. Many terminals are incorporating it as a standard feature, undoubtedly accelerating its implementation and development. Presently, WiFi 7 has already achieved mass production applications in scenarios requiring high throughput and low latency, such as gaming consoles and routers. Throughout the evolution of each generation of WiFi standards, the IoT has increasingly been regarded as a crucial target market. As the latest generation of wireless LAN standards, WiFi 7 has elevated WiFi performance to new heights, laying the foundation for the flourishing development of emerging scenarios. In the future, WiFi 7 is poised to expand the scope of product applications and strengthen its penetration into the WiFi market.      

2024

01/19

The difference between WIFI6 and WIFI5 lies in what aspect?
In the digital era, as wireless networks continue to evolve, WIFI technology, one of our primary means of daily connectivity, is also undergoing constant upgrades. Over the past few years, WIFI5 has been the preferred standard for many users, providing us with reliable wireless connections. However, WIFI6 has now emerged, introducing a range of new features and being hailed as "High Efficiency WIFI." Let's delve into the differences between WIFI6 and WIFI5, explore the advantages brought by this new technology, and consider the position of WIFI5 in this technological evolution.   Compared to the currently prevalent WIFI5 technology, WIFI6 demonstrates superior performance in multiple aspects. WIFI6 not only boasts faster speeds, support for more concurrent devices, and lower latency but also operates with greater energy efficiency. It adopts OFDMA technology similar to 5G, combined with 1024-QAM high-order modulation, enabling a maximum support of 160MHz bandwidth and nearly tripling the speed compared to WIFI5. Through intelligent frequency division technology, WIFI6 can accommodate concurrent connections for more devices, increasing the access device capacity by four times. Moreover, the reduction of queuing phenomena is facilitated by multi-device concurrent connections, actively avoiding interference and reducing latency by two-thirds. During terminal device standby, WIFI6 also supports on-demand wake-up functionality, effectively reducing the power consumption of terminal devices by 30%. These advanced features make WIFI6 a significant technological upgrade in the current field of network communication.     Under the WIFI5 standard, communication between devices can be likened to a single-channel transmission, where at any given moment, only one device can communicate with the router. Even if other devices are idle, they cannot transmit data simultaneously. If any device experiences interference, the entire communication channel may be affected, similar to a blockage in the entire communication process. In contrast, under the WIFI6 standard, communication has been improved. Multiple devices can communicate in a more flexible manner simultaneously, forming a more efficient multi-user transmission. Devices can be grouped into teams, and each team can independently transmit data without interfering with each other. If a particular device experiences interference, only the team to which that device belongs will be affected, without impacting the entire communication process. This makes the WIFI6 standard more powerful and reliable in the face of interference.     To enhance the device access capacity of WIFI networks in densely populated scenarios such as exhibition venues and sports stadiums, WIFI6 has introduced a technology known as BSS coloring. In traditional WIFI communication, devices adhere to the "listen before talk" principle, meaning they wait until other signals on the same channel are detected to be finished before initiating communication. However, BSS coloring technology allows devices to assess whether other signals might impact communication through specific markers. If a WIFI6 device reads the marker and determines it as "non-impactful," it will initiate communication directly, thereby reducing wait times and effectively improving the speed and reliability of wireless networks.     This is a significant improvement, but WIFI5 devices do not support this technology. WIFI5 devices do not carry markers in their transmitted signals, so surrounding devices cannot determine from these unmarked signals whether they might affect their own communication. The only solution is to remain silent, leaving time for these older devices that do not support the new technology.     In such a scenario, once WIFI5 devices initiate communication, it may force WIFI6 devices, which could have communicated, to remain silent. This highlights the advantages of adopting WIFI6 in high-density environments, while traditional WIFI5 devices become a limiting factor for overall communication efficiency. In summary, WIFI6, as the new standard for wireless connectivity in the digital era, is favored by many users due to its higher speed, support for more concurrent devices, low latency, and low power consumption.     Shenzhen Ofeixin Technology Co., Ltd fully leverages the advantages of WIFI6 technology and has successfully launched the WIFI6 module O2064PM. This module incorporates Qualcomm's QCA2064 WIFI 6 chip, featuring ultra-high integration and outstanding performance. The O2064PM module is compatible with IEEE802.11a/b/g/n/ac/ax 2x2 MIMO wireless standards, supporting Dual-band simultaneous (DBS) operation in the 2.4GHz and 5.8GHz frequency bands concurrently. It utilizes an M.2 PCIe interface, achieving a maximum data rate of 1800Mbps. After market validation, the O2064 module has been successfully mass-produced and stands out uniquely in the market.     Simultaneously, Ofeixin continues to innovate, keeping pace with the trends of the times, and has successfully developed and launched the WIFI7 module O7851PM. Based on Qualcomm's WCN7851 chip, the O7851PM utilizes an M.2 PCIe interface with dimensions of 22302.7mm, achieving a transmission rate of up to 5.8Gbps. It supports the latest WIFI7 technologies such as 4096QAM, 320MHz bandwidth, Multi-RU mechanism, Multi-LINK multiple link mechanism, CMU-MIMO, and collaborative debugging of multiple APs, making it an ideal choice for advancing towards higher levels of wireless connectivity. For more information about the product specifications of WIFI7              

2024

01/17